Alternatives Evaluation Summary for Intersections

Alternatives Cost Estimates

Alternatives Benefit/Cost Analysis Worksheets

	OR 22/OR 51 Interchange Alternatives				Doaks Ferry Road Alternatives			Greenwood Road Alternatives			
Evaluation Criteria -Features -Measures	INH-3: Standard Diamond Interchange	INH-4: Tight Diamond Interchange	INH-5: Parclo-B	INH-6: Parclo-B Single Quadrant (WB to SB Loop)	DFR-2: Relocated Access OptionRiggs Street and RI only at DFR	DFR-4: Spring Street Undercrossing Option	DFR-7: Eastbound Access Option-center turn refuge; LIIRIRO	GWR-3: Barrier median; RI/RO only	GWR-4a: Grade separate w/ WB RIIRO	GWR-4b: Grade separate wlo OR 22 access	GWR-6: Offset Dual "T" Intersections
Mobility	0	0		0	-		0				0
-improves future flow -OHP standard for volume to capacity ratio	-Would require signalization of the ramp terminals to meet design mobility standards	-Would require signalization of the ramp terminals to meet design mobility standards	-Best accommodates the critical EB and WB left-turn movements at the ramp terminals under unsignalized conditions	-Would require signalization of the EB ramp terminal to meet the design mobility standard	-Does not eliminate the critical EB to NB left-turn which is forecast to operate above capacity through the 2030 horizon year.	-Eliminates need for center turn refuge for EB to left-in access	-Does not eliminate the critical EB to NB left-turn which is forecast to operate above capacity through the 2030 horizon year.	-Satisfies standard.	- Satisfies standard	- Satisfies standard	- Creates additional turning movements -Satisfies standard
Access Management					0	0					0
-fewer conflict points -spacing standards between ramps, public roads, and driveways	-Grade separated interchanges are consistent with the access management policy for Expressways.	-Grade separated interchanges are consistent with the access management policy for Expressways.	-Grade separated interchanges are consistent with the access management policy for Expressways.	-Grade separated interchanges are consistent with the access management policy for Expressways.	-Consistent with access management goals which call for highly controlled public road connections -Meets access spacing standards	-Consistent with access management goals which call for highly controlled public road connections -Meets access spacing standards	-Consistent with access management goals which call for highly controlled public road connections -Meets access spacing standards	-Consistent with access management goals which call for highly controlled public road connections.	-Consistent with access management goals which call for highly controlled public road connections. -Reduces conflict points from 40 to 2	-Goes above and beyond the access management standards by completely eliminating access to OR 22 -Best supports function of expressway.	-Not entirely consistent with access management goals. -Does not reduce conflict points but moves some to a different location.
Connectivity					0		(\bigcirc		\square	
-direct, efficient access to industries and businesses —optional routes	-Connection to system of local frontage and backage roads provides access and optional routes	-Connection to system of local frontage and backage roads provides access and optional routes	-Connection to system of local frontage and backage roads provides access and optional routes	-Connection to system of local frontage and backage roads provides access and optional routes	-Eliminates SB to EB left turn, which is a minor move -Provides connection to local system on north side of highway -U-turn lane WB to EB provides optional route	Provides access to properties on both sides of highway -Provides connections to local system on both sides of highway	-Eliminates SB to EB left turn, which is a minor move -Provides connection to local system on north side of highway -U-turn lane WB to EB provides optional route	-Eliminates northsouth connectivity for farm equipment and school buses -Mitigation would be overcrossing at other location or improve informal farm equipment undercrossing at Derry (next to RR)	-Provides an efficient grade separated north/south crossing of OR 22 while still accommodating WB access to/from the highway. Will facilitate OR 22 detour route if there are problems on the highway.	-Provides an efficient grade separated north/south crossing of OR 22, but does not provide direct access to the highway	-Accommodates WB and EB access to/from the highway. Will facilitate OR 22 detour route if there are problems on the highway.

	OR 22/OR 51 Interchange Alternatives				Doaks Ferry Road Alternatives			Greenwood Road Alternatives			
Evaluation Criteria -Features -Measures	INH-3: Standard Diamond Interchange	INH-4: Tight Diamond Interchange	INH-5: Parclo-B	INH-6: Parclo-B Single Quadrant (WB to SB Loop)	DFR-2: Relocated Access OptionRiggs Street and R only at DFR	DFR-4: Spring Street Undercrossing Option	DFR-7: Eastbound Access Option-center turn refuge; LI/RI/RO	GWR-3: Barrier median; RI/RO only	GWR-4a: Grade separate w/ WB RIIRO	GWR-4b: Grade separate w/o OR 22 access	GWR-6: Offset Dual "T" Intersections
Safety					0		0		0		0
-reduces conflict points -minimizes emergency response times	-A grade separated interchange would improve the operational safety concerns of the existing atgrade intersection.	-A grade separated interchange would improve the operational safety concerns of the existing atgrade intersection.	-A grade separated interchange would improve the operational safety concerns of the existing atgrade intersection.	-A grade separated interchange would improve the operational safety concerns of the existing atgrade intersection.	-Relocation to straight segment reduces potential for intersection related crashes but does not fully address the operational and safety problems. -Out of direction travel required for return route for emergency vehicles.	-Eliminates the most difficult EB to NB and SB to WB leftturn movements. -Provides fairly direct return route for emergency vehicles.	-The allowance of the EB to NB leftturn movement only partially addresses the operational and safety problems of intersection turning movements. -Out of direction travel required for return route for emergency vehicles.	-A median barrier would restrict the intersection to RI/RO, thereby eliminating the difficult left-turn and crossing movements.	-A grade separated overpass would provide a safe crossing opportunity for farm equipment and school busses.	-A grade separated overpass would provide a safe crossing opportunity for farm equipment and school busses.	-Adds conflict points from turn movements but would relocate some movements to a different location.
Natural Environment	0	0	0	0		0			0	0	0
-Farm, forest, wetlands, wildlife, air quality -minimum impacts to sensitive areas	-McNary Creek in all quadrants to avoid -Floodplain in extreme SE and SW quadrants	-McNary Creek in all quadrants to avoid -Floodplain in extreme SE and SW quadrants -Smallest footprint	-McNary Creek in all quadrants to avoid -Floodplain in extreme SE and SW quadrants -Largest footprint	-McNary Creek in all quadrants to avoid -Floodplain in extreme SE and SW quadrants	-Not anticipated to have any adverse environmental impacts.	-Possible adverse environmental impacts from extensive excavations.	-Not anticipated to have any adverse environmental impacts	-Not anticipated to have any adverse environmental impacts.	-T\&E plant in NW quadrant that would have to be avoided -Floodplain in SW quadrant to avoid -Wetlands in NE quadrant to avoid	-T\&E plant in NW quadrant that would have to be avoided -Floodplain in SW quadrant to avoid -Wetlands in NE quadrant to avoid	-T\&E plant in NW quadrant that would have to be avoided -Wetlands in NE quadrant to avoid
Built Environment	0	4	4	4	4	4	0		4	4	0
-Developable properties, residential parcels, historic properties -Minimum land use, social, historic displacements	-Avoidance of Brunk House -Forest Zone in NE and SW quadrants to avoid -EFU Zone in NW and SW quadrants	-Avoidance of Brunk House -Forest Zone in NE and SW quadrants to avoid -Least land taken from EFU Zone in NW and SW quadrants	-Avoidance of Brunk House -Forest Zone in NE and SW quadrants to avoid -Most land taken from EFU Zone in NW and SW quadrants	-Avoidance of Brunk House -Forest Zone in NE and SW quadrants to avoid -EFU Zone in NW and SW quadrants	-Eliminates SB vehicle access from DFR to Holman Wayside -New roadway could impact existing land use	-Eliminates SB vehicle access from DFR to Holman Wayside -New roadway could impact existing land use	-Continues vehicle access to Holman Wayside -No change to land use	-	-Minor impacts to farm (EFU) lands -Frontage road impacts to EFU lands.	-Minor impacts to farm (EFU) lands	-Minor impacts to farm (EFU) lands -Frontage road impacts to EFU lands. -Turn lanes would need to accommodate farm equipment.
Business	0	0	0	0		1		\bigcirc		0	(
-Parking, access, jobs -Minimum business relocations or eliminations	-Would remove some acreage from producing hazelnut orchard	-Would remove least acreage from producing hazelnut orchard	-Would remove the most acreage from producing hazelnut orchard	-Would remove some acreage from producing hazelnut orchard	- U-turn could need more right-of-way	-Possible RV parking lost -Possible excavation impacts	-U-turn could impact weigh station	-Would prevent farm equipment movement across highway	-Supports farm operations and access	-Supports farm operations	-Supports farm operations

	OR 22/OR 51 Interchange Alternatives				Doaks Ferry Road Alternatives			Greenwood Road Alternatives			
Evaluation Criteria -Features -Measures	INH-3: Standard Diamond Interchange	INH-4: Tight Diamond Interchange	INH-5: Parclo-B	INH-6: Parclo-B Single Quadrant (WB to SB Loop)	DFR-2: Relocated Access OptionRiggs Street and RI only at DFR	DFR-4: Spring Street Undercrossing Option	DFR-7: Eastbound Access Option-center turn refuge; LI/RI/RO	GWR-3: Barrier median; RI/RO only	GWR-4a: Grade separate w/ WB RI/RO	GWR-4b: Grade separate wlo OR 22 access	GWR-6: Offset Dual "T" Intersections
Plan Consistency	0	0	(-	(0		0	(0	(
$\begin{aligned} & \text {-land use and } \\ & \text { transportation plans } \end{aligned}$	-CPA required to incorporate into county and SKATS TSPs	-CPA required to incorporate into county and SKATS TSPs	-CPA required to incorporate into county and SKATS TSPs	-CPA required to incorporate into county and SKATS TSPs		CPA required to incorporate into county and SKATS TSPs	- No CPA required to incorporate into county and SKATS TSPs	-CPA required to incorporate into county TSP	-CPA required to incorporate into county TSP -Goal exception	-CPA required to incorporate into county TSP -Goal exception	-CPA required to incorporate into county TSP -Goal exception
Flexibility	0	0	\triangle	\triangle	0	0		0	-	0	\bigcirc
-potential to phase or separate -constrained funding	-Interchange can be built as final phase after local access roads interchange by itself probably not phaseable	-Interchange can be built as final phase after local access roads interchange by itself probably not phaseable	-Interchange can be built as final phase after local access roads interchange by itself probably not phaseable	-Interchange can be built as final phase after local access roads interchange by itself probably not phaseable	-Component can be a phase of a larger project but not phaseable by itself	-Component can be a phase of a larger project but not phaseable by itself	-Component can be a phase of a larger project and is phaseable by itself	-component can be a phase of a larger project but not phaseable by itself	-component can be a phase of a larger project but not phaseable by itself	-component can be a phase of a larger project but not phaseable by itself	-component can be a phase of a larger project and also phaseable by itself
Cost	-	O	-	-)	-	-	0	-	0	O
-multiple funding sources -benefit/cost ratio -cost effective	-Similar to others	-Similar to others	-Similar to others	-Similar to others	-Low cost -Pavement	-High cost -Excavation	-Low cost -Paint	-Median cost only	-Structure and frontage road costs	-Structure cost	-Provides movement without structure cost but requires frontage road

- Directly/positively meets intent of criterion
(Partially meets intent of criterion
N/A Not applicable—neither meets/doesn't meet intent of criterion

CH2M HILL					
PROJECT OR22/51 Expressway Management Plan INH-3		REFERENCE NAME/PHONE			SHEET
design level: Preliminary					1 of 1
KIND OF WORK: Roadway/Structure		LENGTH (ML) 1.52		DATE 6/1/2007	NAME Darren Hippenstiel
NO.	ITEM	UNIT	UNIT COST	QUANTITY	COST
1	Curb, Gutter, Sidewalks \& Drainage	Mi.	\$543,000	1.52	\$825,360
2	Bike Boulevard	M.	\$102,000	0.00	\$0
3	New Roadway	Lane-Mi,	\$835,000	5.61	\$4,684,350
4	Overiay Existing Roadway	Lane-Mi.	\$66,000	0.00	\$0.
5	Reconstruct Existing Roadway	Lane-Mi.	\$863,000	0.00	\$0
6	Intersection Widening	EA	\$46,000	0.00	\$0
7	Restriping Existing Roadway	Lane-Mi.	\$15,000	0.00	\$0
8	Interconnect Signal	LS	\$30,000	0.00	\$0
9	New Signal	EA	\$180,000	0.00	\$0
10	Signal Modifications	EA	\$60,000	0.00	\$0
11	Transit Enhancements	EA	\$25,000	0.00	\$0
12	Traffic Caiming (See note 1)	\%	-	0.0\%	\$0
13	Dllumination	Mi	\$260,000	1.52	\$395,200
14	Landscaping	Mi.	\$225,000	1.52	\$342,000
15	Bridges (See note 2)	SF	\$200	12,300.00	\$2,460,000
16	Walls	SF	\$50	1,500.00	\$75,000
SUBTOTAL					\$8,781,910
ADDITIONAL COSTS			RANGE	PERCENTAGE	COST
Construction Surveying			1.0-2.5\%	2.5\%	\$220,000
TP \& DT			3.0-8.0\%	8.0\%	\$703,000
Mobilization			8.0-10.0\%	10.0\%	\$878,000
Erosion Control			0.5-2.0\%	2.0\%	\$176.000
Contingency			40.0\%	40.0\%	\$3,513,000
Escalation (per year)-Current Year			0.5-2.0\%	0.0\%	
				0	So
TOTAL CONSTRUCTION COST					\$14,271,910
	Design Engineering	13.0\%	13.0\%	0.0\%	\$1,855,000
	Construction Engineering	10.0\%	10.0\%	0.0\%	\$1,427,000
TOTAL PROJECT COST					\$17,553,910

CH2M HILLSUMMARY - ORDER-OF-MAGNITUDE ESTIMATE					
PROJECT:OR22/51 Expressway Management Plan INH-4		REFERENCE NAME/PHONE			SHEET
DEstign level: Preliminary					1 of 1
KIND OF WORK: Roadway/Structure		LENGTH (Mi)1.23		DATE 6/1/2007	NAME Darren Hippenstiel
NO.	ITEM	UNIT	UNIT COST	QUANTITY	COST
1	Curb, Gutter, Sidewalks \& Drainage	M.	\$543,000	1.23	\$667,890
2	Bike Boulevard	Mi.	\$102,000	0.00	\$0
3	New Roadway	Lane-Mi.	\$927,000	4.59	\$4,254,930
4	Overliay Existing Roadway	Lane-Mi	\$66,000	0.00	\$0
5	Reconstruct Existing Roadway	Lane-Mi.	\$955,000	0.00	\$0
6	Intersection Widening	EA	\$46,000	0.00	\$0
7	Restriping Existing Roadway	Lane-Mi.	\$15,000	0.00	\$0
8	Interconnect Signal	LS	\$30.000	0.00	\$0
9	New Signal	EA	\$180,000	0.00	\$0
10	Signal Modifications	EA	\$60,000	0.00	\$0
11	Transit Enhancements	EA	\$25,000	0.00	\$0
12	Traffic Calming (See note 1)	\%	-	0.0\%	\$0
13	Illumination	Mi.	\$260,000	1.23	\$319,800
14	Landscaping	Mi.	\$225,000	1.23	\$276,750
15	Bridges (See note 2)	SF	\$200	12,300.00	\$2,460,000
16	Walls	SF	\$50	3,000,00	\$150,000
SUBTOTAL					\$8,129,370
ADDITIONAL COSTS			RANGE	PERCENTAGE	COST
Construction Surveying			1.0-2.5\%	2.5\%	\$203,000
			3.0-8.0\%	8.0\%	\$650,000
TP \& DT Mobilization			8.0-10.0\%	10.0\%	\$813,000
Erosion Control			0.5-2.0\%	2.0\%	\$163,000
Contingency			40.0\%	40.0\%	\$3,252,000
Escalation (per year)-Current Year			0.5-2.0\%	0.0\%	
				0	\$0
TOTAL CONSTRUCTION COST					\$13,210,370
	Design Engineering	13.0\%	13.0\%	0.0\%	\$1,717,000
	Construction Engineering	10.0\%	10.0\%	0.0\%	\$1,321,000
TOTAL PROJECT COST					\$16,248,370

CH2M HILLSUMMARY - ORDER-OF-MAGNITUDE ESTIMATE					
PROJECT:OR22/51 Expressway Management Plan INH-5		REFERENCE NAMEIPHONE			$\begin{aligned} & \text { SHEET } \\ & \text { tof } 1 \end{aligned}$
Oesign level: Preliminary					
kind OF WORK: Roadway/Structure		LENGTH (MI).)1.81		DATE 6/1/2007	NAME Darren Hippenstiel
NO.	ITEM	UNIT	UNIT COST	QUANTITY	COST
1	Curb, Gutter, Sidewalks \& Drainage	Mi.	\$543,000	1.81	\$982,830
2	Bike Boulevard	Mi.	\$102,000	0.00	\$0
3	New Roadway	Lane-Mi.	\$835,000	6.08	\$5,076,800
4	Overlay Existing Roadway	Lane-M.	\$66,000	0.00	\$0
5	Reconstruct Existing Roadway	Lane-ML.	\$863,000	0.00	S0
6	Intersection Widening	EA	\$46,000	0.00	\$0
7	Restriping Existing Roadway	Lane-Mi.	\$15,000	0.00	\$0
8	Interconnect Signal	LS	\$30,000	0.00	so
9	New Signal	EA	\$180,000	0.00	S0
10	Signal Modifications	EA	\$60,000	0.00	\$0
11	Transit Enhancements	EA	\$25,000	0.00	50
12	Traffic Calming (See note 1)	\%	-	0.0\%	\$0
13	Illumination	Mi.	\$260,000	1.81	\$470,600
14	Landscaping	ML.	\$225,000	1.81	\$407,250
15	Bridges (See note 2)	SF	\$200	12,300.00	\$2,460,000
16	Walls	SF	\$50	1,500.00	\$75,000
SUBTOTAL					\$9,472,480
ADDITIONAL COSTS			RANGE	PERCENTAGE	COST
Construction Surveying TP \& DT Mobilization Erosion Control Contingency	Construction Surveying TP \& DT Mobilization Erosion Control Contingency		1.0-2.5\%	2.5\%	\$237,000
			3.0-8.0\%	8.0\%	\$758,000
			8.0-10.0\%	10.0\%	\$947,000
			0.5-2.0\%	20\%	\$189,000
			40.0\%	400\%	\$3,789,000
Escalation (per year) -Current Year			0.5-2.0\%	$\begin{gathered} 0.0 \% \\ 0 \end{gathered}$	30
TOTAL CONSTRUCTION COST					\$15,392,480
	Design Engineering	13,0\%	13.0\%	0.0\%	\$2,001,000
	Construction Engineering	10.0\%	10.0\%	0.0\%	\$1,539,000
TOTAL PROJECT COST					\$18,932,480

CH2M HILLSUMMARY - ORDER-OF-MAGNITUDE ESTIMATE								
PROJECT: OR22/51 Expressway Management Plan DFR-7 Doaks Ferry Left Turn		REFERENCE NAME/PHONE			$\begin{aligned} & \text { SHEET } \\ & 1 \text { of } 1 \end{aligned}$			
DESIGN LEVEL: Preliminary								
KIND OF WORK: Roadway		LENGTH (MI.):		DATE	NAME			
		1/8/2008		Shamrell				
NO.	ITEM			UNIT	UNIT COST	QUANTITY		COST
1	Curb, Gutter, Sidewalks \& Drainage	Mi.	\$543,000	0.00	\$	-		
2	Bike Boulevard	Mi.	\$102,000	0.00	\$	-		
3	New Roadway	Lane-Mi.	\$455,000	0.32	\$	143,370.96		
4	Overlay Existing Roadway	Lane-Mi.	\$66,000	1.75	\$	115,312.50		
5	Reconstruct Existing Roadway	Lane-Mi.	\$483,000	0.00	\$	-		
6	Intersection Widening	EA	\$46,000	0.00	\$	-		
7	Restriping Existing Roadway	Lane-Mi.	\$15,000	0.00	\$	-		
8	Interconnect Signal	LS	\$30,000	0.00	\$	-		
9	New Signal	EA	\$180,000	0.00	\$	-		
10	Signal Modifications	EA	\$60,000	0.00	\$	-		
11	Transit Enhancements	EA	\$25,000	0.00	\$	-		
12	Traffic Calming (See note 1)	\%	-	0.0\%	\$	-		
13	Illumination	Mi.	\$260,000	0.00	\$	-		
14	Landscaping	Mi.	\$225,000	0.00	\$	-		
15	Bridges (See note 2)	SF	\$200	0.00	\$	-		
16	Walls	SF	\$50	0.00	\$	-		
SUBTOTAL					\$	258,683.46		
ADDITIONAL COSTS			RANGE	PERCENTAGE	COST			
			1.0-2.5\%	2.5\%	\$	6,000.00		
TP \& DT			3.0-8.0\%	8.0\%	\$	21,000.00		
Mobilization			8.0-10.0\%	10.0\%	\$	26,000.00		
Erosion Control			0.5-2.0\%	2.0\%	\$	5,000.00		
Contingency			40.0\%	40.0\%	\$	103,000.00		
	Escalation (per year) -Current Year		0.5-2.0\%	0.0\%				
				0	\$	-		
	TOTAL CONSTRUCTION COST				\$	419,683.46		
	Design Engineering	13.0\%	13.0\%	13.0\%	\$	55,000.00		
	Construction Engineering	10.0\%	10.0\%	10.0\%	\$	42,000.00		
	TOTAL PROJECT COST					\$516,683		

CH2M HILLSUMMARY - ORDER-OF-MAGNITUDE ESTIMATE						
PROJECT: OR22/51 Expressway Management Plan DFR-7 Weigh Station U-Turn		REFERENCE NAME/PHONE			SHEET	
DESIGN LEVEL: Preliminary						
KIND OF WORK: Roadway		LENGTH (MI.):		DATE 1/8/2008	NAME	
NO.	ITEM	UNIT	UNIT COST	QUANTITY		COST
1	Curb, Gutter, Sidewalks \& Drainage	Mi.	\$543,000	0.00	\$	-
2	Bike Boulevard	Mi.	\$102,000	0.00	\$	-
3	New Roadway	Lane-Mi.	\$455,000	0.30	\$	134,270.96
4	Overlay Existing Roadway	Lane-Mi.	\$66,000	1.75	\$	115,312.50
5	Reconstruct Existing Roadway	Lane-Mi.	\$483,000	0.00	\$	-
6	Intersection Widening	EA	\$46,000	0.00	\$	-
7	Restriping Existing Roadway	Lane-Mi.	\$15,000	0.00	\$	-
8	Interconnect Signal	LS	\$30,000	0.00	\$	-
9	New Signal	EA	\$180,000	0.00	\$	-
10	Signal Modifications	EA	\$60,000	0.00	\$	-
11	Transit Enhancements	EA	\$25,000	0.00	\$	-
12	Traffic Calming (See note 1)	\%	-	0.0\%	\$	-
13	Illumination	Mi.	\$260,000	0.00	\$	-
14	Landscaping	Mi.	\$225,000	0.00	\$	-
15	Bridges (See note 2)	SF	\$200	0.00	\$	-
16	Walls	SF	\$50	0.00	\$	-
SUBTOTAL					\$	249,583.46
ADDITIONAL COSTS			RANGE	PERCENTAGE	COST	
	Construction Surveying		1.0-2.5\%	2.5\%	\$	6,000.00
	TP \& DT		3.0-8.0\%	8.0\%	\$	20,000.00
	Mobilization		8.0-10.0\%	10.0\%	\$	25,000.00
	Erosion Control		0.5-2.0\%	2.0\%	\$	5,000.00
	Contingency		40.0\%	40.0\%	\$	100,000.00
	Escalation (per year) -Current Year		0.5-2.0\%	$\begin{gathered} 0.0 \% \\ 0 \end{gathered}$	\$	-
TOTAL CONSTRUCTION COST					\$	405,583.46
	Design Engineering	13.0\%	13.0\%	13.0\%	\$	53,000.00
	Construction Engineering	10.0\%	10.0\%	10.0\%	\$	41,000.00
TOTAL PROJECT COST						\$499,583

OREGON DEPARTMENT OF TRANSPORTATION HAZARD ELIMINATION PROGRAM BENEFIT/COST ANALYSIS WORKSHEET

\qquad
\qquad
\qquad

Puninct Niame

Projact Narne	DEA 2			Aepron	2	Date:	sra07
Prupect on Sive Highnay							
Poune Number	22	Hwy Name.	WILLAMINA-SALEM	NFFFiom	MP 21.94	to	MP22.14
Rowat Cherauter	RUFAL	Facity Type	OTHER MIGHWAY				
County	PGik	city	Salen	Crasti Data Fiom	B/1/969	to	7/31/2004

Compeatienthe Eorocric Vaini Per Crait		
	Utan	Muris
P9\%		
alfarenet	513000	518000
	\$38000	851,000
Cher 耳iame Heptivily	\$41.000	355,000
-	Stemicoin	31,285,000
Orae Higruay	Seag, 000	31,20,000

\qquad *-Orashea

Anntasi Benefits a $\frac{\text { Tosal Orash Value }}{\text { TosalMcontie/ 12 }}=5$

Estimated Project Cost $=\$ 1,215,000$
$\mathrm{B} C$ Ratio $=\quad$ Annual Benefite \times Present Worm Factor $\{10$ or 2D yearb

| $\$ 112,000$ | \& | 133 |
| :--- | :--- | :--- | :--- |

1,25

Noten

2 Select a FWF for the 战 of cantermenaner, See intructione

 usdaned bo 20end dollis with Gop inpict price deflator.

Fockricencoria
\qquad $-$

OREGON DEPARTMENT OF TRANSPORTATION
 HAZARD ELIMINATION PROGRAM BENEFIT/COST ANAL.YSIS WORKSHEET

Fripers Name:
DFR 4

-

Pagkan 2

Frijact on simfo Hignway							
Foutie Number	22	Heny Narte	WILLAMANA-SALEM	M ${ }^{\text {P F From }}$	21,94	20.	22.14
Foud Guaracter:	RURAL	Fauzit lype	OTHEA HIGHWAY				
Courty	MORACW	City	Salem	Crash Diata From	8/1/1909	10.	7131/2004

Froject Descripion New rondway and undercrossing at Spring Street connecling north and south side beckape roads.
Fropand By Harogu Noonarian
Type or Target Crasher

Eacisubumer
\qquad

Projoct Nama	DFR 7			Regon	2	Date	9/2007
ResteNamber	22	Hey turre	WILLAMINA-SALEM	MFFiom	21.94	to	22.14
Fower Craracter	Ruamal	Fuclitr Type	OTHER HIGAWAY				
County	MORADW	Citr	Salem	Cran Dats Fion	841/1999	4	7/31/2004

			4	*	**
			Niatber of		
			pimarsath	Valuopin	Tocal Enonoinds
Type of' Target Grashes			Drashos	Crash	Vilus

inemmare ar fummay	5034009	\$1.38,.100
Otrer Higiway	seangoo	$5 \mathrm{~T}, 398,000$

EVC Fatio -	Arnual Eahatits X Frovent Wurth Faclot <10 or 20 yeara)					
	Entented Propet Coat					
Bic Ratio =	5 1422, 3100	x	4	1.11	*	

Noten

[^0]
OREGON DEPARTMENT OF TRANSPORTATION
 HAZARD ELIMINATION PROGRAM BENEFIT/COST ANALYSIS WORKSHEET

Notes

1 Composite crash reduction factor calculated if more than one countermeasure is applied
2 Select a PWF for the life of countermeasure. See instructions
3 PDO value is $\$ 6,500$ per crash adjusted with an under reporting factor of 2.0 . National Safety Council, 2000 estimates of value per crash.
4 Economic costs per crash are calculated using 1998-2000 Oregon crash data and FHWA's Technical Advisory "Motor Vehicle Accident Costs, T 7570.2, October 31, 1994 updated to 2001 dollars with GDP implicit price deflator.

Project Name:	DFR 7 (Doaks Ferry Left Turn Only)			Region:	2	Date:	6/2/07
Project on State Highway							
Route Number:	22	Hwy Name:	WILLAMINA-SALEM	MP From:	21.94	to	22.14
Road Character:	RURAL	Facility Type:	OTHER HIGHWAY				
County:	MORROW	City:	Salem	Crash Data From:	8/1/1999	to	7/31/2004

Project Description: Realigned right-out connection, painted island, center turn refuge for left-in at DFR
Prepared By:
Haregu Nemariam

OREGON DEPARTMENT OF TRANSPORTATION HAZARD ELIMINATION PROGRAM BENEFIT/COST ANALYSIS WORKSHEET

-	HareguNemariam			Transportation Engi		
				A	B	$A^{*} B$
			Number	Number of	Economic	
		Countermeasure ID No.	of Targe Crashes	Preventable Crashes	Value per Crash	Total Economic Value

Highway/Street Type	Urban	Rural
PDO ${ }^{3}$		
All facilities	\$13,000	\$13,000
Moderate (Injury B) and Minor (Injury C) Injury ${ }^{4}$		
Interstate or Freeway	\$39,000	\$51,000
Other State Highway	\$41,000	\$55,000
Fatal and Severe (Injury A) Injury ${ }^{4}$		
Interstate or Freeway	\$694,000	\$1,352,000
Other Highway	\$689,000	\$1,359,000

Uniform Series Present Worth Factor (4\%)	
10 years	20 years
$\mathbf{8 . 1 1}$	13.59

B / C Ratio $=$	Annual Benefits X Present Worth Factor (10 or 20 years)					
	Estimated Project Cost					
B / C Ratio =	\$ 142,000	x	2	8.11	=	2.23
	\$ 517,000					

Notes

1 Composite crash reduction factor calculated if more than one countermeasure is applied
2 Select a PWF for the life of countermeasure. See instructions
3 PDO value is $\$ 6,500$ per crash adjusted with an under reporting factor of 2.0 . National Safety Council, 2000 estimates of value per crash.
4 Economic costs per crash are calculated using 1998-2000 Oregon crash data and FHWA's Technical Advisory "Motor Vehicle Accident Costs, T 7570.2, October 31, 1994 updated to 2001 dollars with GDP implicit price deflator.

HER Fia Cocw: PAD ot \qquad

OREGON DEPARTMENT OF TRANSPORTATION
 HAZARD ELIMINATION PROGRAM BENEFIT/COST ANALYSIS WORKSHEET

Notes

 pdated to poci thilues with liop implot pice datert!

\qquad
\square

OREGON DEPARTMENT OF TRANSPORTATION
 HAZARD ELIMINATION PROGRAM BENEFIT/COST ANALYSIS WORKSHEET

Propect Kiame	GWH 4a	Hegian	2	Data	6/207

Project an Skate foghwar							
Poute Nurtbel:	22	Hwy Name	WILLAMINA-SALEN	MP Fram	MP 18.41	to:	MP 18.82

Foad Churacter	BUFAL	Facily Type	OTHER HIGHWAY				
Qounty	POLK	Ctiy	OUT SIDE SALEM UBGI	Crach Duta Fiom	$8 \times 1 / 1999$	th	7/31/2004

Piojoct Dewmporm. Grade Separate with westbound right infout access to OR 22 overpata
Feppared By Haregu Nemarinin:
Typa of Target Coanhes

Moderame (Inyury B) and Minor Tilury Os Iniury Cushes

Fata anct Seplive (hary A) Injay Crables

$0-$ Total F DO Cranhes

Nuirher
bf Tarqet
Crashins
Titie:

A	\ldots	大B
Number at	Erumornt	
Mexambina	Valupper.	Total Eronnotic
Crames	Grath	Vitay

Coopraticosime Esononis Valic pir.Cium		
Heftrwatsture type	Untan	Hira
PSP ${ }^{\text {a }}$		
人1altacitat	512800	513,000
menmale oc Preenty	830,500	551,900
Priar Sutu Heghay	\$4, 200	350,000
Onersiate or Fremmay	Strucher	51.23000
Otier Highway	S830,000	\$1,850,000

$\frac{\frac{0 \pi}{0 \%}}{\frac{0 \%}{0 \%}}$

$\frac{0.0}{0.0}$
$\frac{0.01}{0.0}$
0.0

$\frac{$| $\frac{\mathrm{Ml}}{\mathrm{No}}$ |
| :---: |
| $\frac{\mathrm{No}}{\mathrm{No}}$ |
| $\frac{\mathrm{No}}{\mathrm{No}}$ |
| 4 |}{4} $=\frac{\frac{\partial \%}{\partial \%}}{\frac{05}{0 \%}} \frac{\frac{0.0}{0.0}}{\frac{0.0}{0 \%}} \frac{\frac{0.0}{0.0}}{\frac{0.0}{0}}$

\qquad $<=$ Orashan $*=$ Tolar injury BRC Crasfes

 cratces Fatal \& IniA Crsates $-$ Anntas Benetite $=\frac{\text { Total Cranh Vaine }}{\text { Tatal Monthin } / 12}$

$$
\text { Estimated Project Cost }=\$ 5,880,000
$$

BVC Ratio =
Arrual Herehta X. Prement Worth Facior (1 O or 20 yeara) Efimatecerofect Cotel

BIC Ratio - \qquad $*$

textes

IV Seiect a PWF tor the the of countermenserm See initicictons

 ipdated to BOed ctulars wif GOF mpore pice cirfoni.

Propect Marne	GWRab			Fegion	2	Qate:	. $62 / 297$
Prouct an stuk Heghwey							
Fouta Mustote	22	Hwy Nome	WILLAMINA-SALEM	MPFIOM	MPIE.41	63	NF18.62
Rmat Charantor	FUURAL	Facilty Typal	OTHEA HEGhTWAY				
Comity	PGLK	Cty	OUT SIDE SALEMUBC	Crash Data Fram	8111999	\%	$7131 / 2004$

$$
\begin{aligned}
& \frac{0.0}{\frac{0.0}{0.0}} \\
& \frac{0.0}{0.0} \\
& \hline \frac{0.0}{0}
\end{aligned}
$$

Modenatr (ajuiry E) and Mnor iniquiy C) inyury Cashes

Eghmavistay Type	Uutial	Funa
FDO ${ }^{\text {a }}$		
Arlacioss	512000	\$19,000
	\$30.000	851,000
Oter Bine Hotway	31.060	535000
Finaing siwereition Asinufy*		
Fiveran or Fresmiy	5694000	-56,382,000
Oterthpuay	Srag 0 \%	31,359,900

iinw
No
No-
No
Nio
No

\therefore Tixar Fofais S inju Crasheas

$\frac{00}{7020} \frac{81359000}{}$ | $\frac{4}{3!e}$ |
| :---: |
| $\frac{10}{370}$ |
| $\frac{\mathrm{Na}}{\mathrm{Na}}$ |
| Na |

 - $5 \quad 171,000$

$$
=\frac{\frac{05}{05}}{\square} \frac{\frac{05}{05}}{\frac{05}{05}}
$$

$$
=\frac{\frac{10 \%}{75 \%}}{\frac{105}{0 \%}} \frac{\frac{1.6}{1.6}}{\frac{05}{0.0}} \frac{\frac{05}{0.0}}{\frac{05}{0.0}}
$$

\qquad

$$
=\frac{\frac{\omega}{\omega}}{\frac{\omega}{\omega}} \frac{\frac{0.0}{\frac{0.0}{0}}}{\frac{0.0}{\frac{0}{0}}} \frac{\frac{0.0}{0.0}}{\frac{0.0}{0}}
$$

Buc Fatio -
Anvias Becerta X Frissart Wouth Facsor (10.ar 20 yegra)

Brc Rane $=$ \qquad 0.08

Urform Sman Fresare Wort Facmetors	
10 pars	20 ymars
811	13.03

Notog

[^1]OREGON DEPARTMENT OF TRANSPORTATION HAZARD ELIMINATION PROGRAM BENEFIT/COST ANALYSIS WORKSHEET
\qquad
\qquad \square

- thon \qquad
GWR 5 Ottset Dual Tintersections

Frapoct Name	GWR E Ottsot Dual T Intersections			Aegion	2	Oate	E/2007
Fixgect ont State Hyplway							
Aupue Number	22	Heny Name	WILLAMINA,BALEM	MP Frame	MP 10.41	50	MP 18.62
Roan Character	TURAL	Fanity Trpe	OTHER HIGHWAY				
Cuser	POLX	cify	OUT SIDE SALEM UBG	Frash Dasta Finm	8/12999	50	731/2004

Pmpared oy:

Harequ Nemariam

Pmpared oy:	Haregu Nemariam			Transportation Engincer		
				2	\Rightarrow	A*
				Number at	Evonoman	
				Hummive	Vahopor	Total Economic
Type ${ }^{\text {a }}$ Targer Criates				Crawnes	Sresh	Vüue

Maderate (Impry an and Mror (oriury G) Injury Crashes

196
No
No
Nio
No
Pa

Ratal and Sirvepe (inyry A) riun crasties:

of me		
Na	016	00
Na	a*\%	0.0
Nop	905	0.0
No.	0*	0.0
No	9\%	0.0

Himawsintel Tper	Utun	Fatis
$900{ }^{1}$		
Al tromer	\$13.000	512000
Therstate or lisemay	\$38000	S61,000
Orew Erale Hipmay	541000	S92000
-rterntile or Frustay	\$014.100	51,380,009
Omar Higtray	seen poos	S1,959,000

10 jears	20 yeara
会 11	1350

Notes

a Sekec, a PWF hin the ith of coontemeasum. Sel-intructions

 ubdoted to 200t diame weth uDe areich price cuitake

OREGON DEPARTMENT OF TRANSPORTATION

HAZARD ELIMINATION PROGRAM BENEFIT/COST ANALYSIS WORKSHEET
 OREG HAZARD ELIMINATION PROGRAM

Hotes

Finctincleake
\qquad
OREGON DEPARTMENT OF TRANSPORTATION
HAZARD ELIMINATION PROGRAM BENEFIT／COST ANALYSIS WORKSHEET

Prgaoct Naire	INH 4			Alagion：	2	Dater	61207
Arpect an State H4phomar							
Poute Nuncer	22	Hwy Piame	WLLLAMINA－SALEM	MP Fram	MP 20．27	4	MP 20.51
Froad churacker	RURAL	Facilly Type：	QTHER HIGHWAY				
County	POLK	Cry	OUT SIDE SALEM UAG	Crash Dota From	$311 / 1999$	t）	7131／2004

Praect Demeriptram Tight diamond interchange
Preppaied Ely： Ha
Type al Taruet Crambes

$\frac{14}{014}$
$\frac{\mathrm{NO}}{\mathrm{NO}}$
$\frac{\mathrm{No}}{\mathrm{NO}}$
No

ritis：

a	0	明
nunber of	Econoatc	
Fimmeratie	Vatuo per	Total Enonorit
Crashes	Crash	Value

Fitas and Severie（iniury A）Injury Crashes

Hywwarnituet Iypu	Itam	F\％rai
PCO^{1}		
Aly mater	\＄13000	133，000
Irterubito nt Epewivg	\＄38， 000	851.000
Other Stale Highway	\＄41，000	\＄45，000
Ireamale ert fraeway	\＄694060	31.392009
Cother Hegtavay	S83a，006	31.80000

10 yesm	20 years
6.11	13.5

anc Ristio＝	Annival Eunefits \times Peesent Wort Facfor 310 or 20 years）					
	Estrined Pripact Cost					
日业 fatio－	5 472，000	x		13.5	－	0.3

Nolana

1 Composte crastriedicion sactir ciniluted i more than one cmmarmeaseat a applia

OREGON DEPARTMENT OF TRANSPORTATION
HAZARD ELIMINATION PROGRAM BENEFIT/COST ANALYSIS WORKSHEET

Mates

2 Select a FWF tir te Be of ooictommanure Sow intination

 updahed to 200nt iofars with GOP impliot pice dataiber
tacolicoskodit
\qquad

OREGON DEPARTMENT OF TRANSPORTATION
 HAZARD ELIMINATION PROGRAM BENEFIT/COST ANALYSIS WORKSHEET

Fiofect Name	INTH I_{5}			Region	2	Date	$522 \pi 7$
Prigiect in State thighwey							
Roche Namber	22	Hwy Natier	WILLAMMNASALEM	MR From	MP2027	t)	NP 20.51
Rood Chatacter:	PUAAAL	Facilly Type	OTHER HIGHWAY				
Couritr	POLK	City	Out aide Salam U[2B:	Crash Data From	84/1979	ba	7131/2004

Frotact Description
Replace intorsection with tliamond interchange that includes westhounct to southbound foep eff-ramp trom पn 22

[^0]:

[^1]: 1 Compoete gan rediction tactir calcuhnad if more then one courterneroturn in acpoed

